Optically Pure Haloselenuranes. First Synthesis and Nucleophilic Substitutionst

Tamiko Takahashi, Noriyuki Kurose, Saburo Kawanami, Yoshitsugu **Arai;** and Toru Koizumi'

Faculty of Pharmaceutical Sciences, Toyama Medical & *Pharmaceutical University, 2630 Sugitani, Toyama 930-01, Japan*

Motoo Shiro'

Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196, Japan

Received February 3, 1994.

Summary: The first synthesis of optically pure haloselenuranes 1 has been accomplished by utilizing the 2-exohydroxy-10-bornyl group **as** a chiral ligand. Complete retention of the configuration has been observed in interconversion reactions between haloselenuranes **1** and selenoxide **2** and in nucleophilic substitution reactions of **1.**

In contrast to the many available reports on the synthesis, structural features, and mechanistic aspects of hypervalent $10-S-4¹$ organosulfur species (sulfuranes).² little is known about the chemistry of hypervalent 10- Se-4 organoselenium species (selenuranes).3 In particular, the stereochemical aspects of the nucleophilic substitution reactions of these compounds have not been reported due to the lack of a convenient method for the synthesis of optically active selenuranes. We report here the first synthesis of the optically pure haloselenuranes **1.** The 2-exo-hydroxy-10-bornyl group served **as** a chiral ligand. We observed complete retention of configuration in the interconversion reactions of haloselenuranes **1** and selenoxide **2** (Scheme 1) and in the nucleophilic substitution reactions of the selenuranes 1 (Scheme **2).**

Optically active selenoxide **2** was prepared by a route shown in Scheme l.4 Selenide 3 was readily obtained by reaction of **(1s)-10-bromo-2-exo-borneols** with sodium

1a: $X = Cl$, 1b: $X = Br$, 1c: $X = 3,5$ -dinitrobenzoyloxy. $1d: X = p$ -TolSO₃

a Key: (a) (PhSe)₂/NaBH₄/EtOH/ Δ ; (b) *m*-CPBA/CH₂Cl₂/-78°C; NaHCO₃/H₂O; (c) *t*-BuOCl/CH₂Cl₂; (d) HX/MeOH or HX/MgSO₄/ CH_2Cl_2 ; (e) $NaHCO_3/H_2O$.

phenylselenolate.8 Oxidation of **3** with 3-chloroperbenzoic acid (m-CPBA, -78 "C) afforded a single diastereomeric selenoxide **27** (96% yield). On the other hand, use of 30% H_2O_2 or t-BuOCl (then NaHCO₃-H₂O) for oxidation of the selenide 3 gave a quantitative mixture of two selenoxides, **2** and **4,** which were diastereomeric at selenium. Surprisingly, a mixture of the selenoxides **2** and **4** changed into **2** upon silica gel column chromatography of the reaction mixture. Selenoxide **2** was thus the result of this operation. The absolute stereochemistry of the selenium atom in **2** is unequivocally established to be R by X-ray crystallography (Figure 1).⁷

^fThis paper is dedicated to Professor Yoshifumi Maki on this occasion of his retirement from Gifu Pharmaceutical University in March 1994.

Present address: Gifu pharmaceutical University, 5-6-1 Mitahora

 \bullet Abstract published in *Advance ACS Abstracts*, June 1, 1994.

⁽¹⁾ Perkins, C. W.; Martin, J. C.; Arduengo, A. J., **III;** Lau, W.; Alegria, A.; Kochi, J. K. *J. Am. Chem. SOC.* 1980,102,7753-7759. (2) Haves. R. A.: Martin. J. C. Sulfurane Chemism. In *Oraanic Sulfur*

Chemistry, Theoretical and Experimental Advances; Bernardi, F., Csizmadia, I. G., Mangini, A., Eds.; Elsevier: Amsterdam, 1985. (3) We use the name "selenurane" for tetrasubstituted selenium(IV)

compounds." For the synthesis of racemic selenuranes see ref 3b-g. For the synthesis and separation of racemic diastereomers of a dialkoxyselenurane see ref 3a. For the synthesis and partial separation of a bis-
(acyloxy)selenurane see ref 3h. (a) Reich, H. J. C. J. Am. Chem. Soc.
1973, 95, 964–966. (b) Paulmier, C. Selenium Reagents and Intermediates
in Org The Chemistry of Organic Selenium and Tellurium Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1987; Vol. 2. (d) McCullough, J. D.; Hamburgar, G. J. Am. Chem. Soc. 1941, 63, 803-807; 1942, 64, 508-513. (e) Fuj *Chem. SOC.* 1991,113,6337-6338. **(f)** Fujihara, H.; Mima, H.; Erata, T.; Furukawa, N. J. *Am. Chem. SOC.* 1992,114,3117-3118. (g) Fujihara, H.; Mima, H.; Erata, T.; Furukawa, N. J. *Am. Chem. SOC.* 1993,115,9826-

^{9827. (}h) Lindgren, B. *Acta Chem. Scand.* 1972,26,2560-2561. (4) Little workhasbeenreportedon confiationallystableselenoxidea with high optical purity except for studies on the systems having bulky substituents⁴ ⁻ and an intramolecular hydrogen bond:⁴⁴ (a) Zylber, N.; Zylber, J. J. Chem. Soc., Chem. Commun. 1978, 1084-1085. (b) Shimizu, T.; Kikuchi, K.; Ishikawa, Y.; Ikemoto, I.; Kobayashi, M.; Kamigata, N. *J. Chem. SOC., Perkin Trans.* 1 1989,597-602. (c) Davis, F. A.; Reddy, T. J. *Org. Chem.* 1992,57, 2599-2606. (d) Back, T. G.; Iburahim, N.; McPhee, D. J. J. *Org. Chem.* 1982,47, 3283-3289. In addition to the phenyl selenoxide 2, we obtained the corresponding methyl and ethyl
derivatives by using the 2-exo-hydroxy-10-bornyl group as a chiral ligand.
(5) Poth, N. Rev. Tech. Luxemb. 1976, 68, 195–199; Chem. Abstr. 1977,

^{87,135965}k.

⁽⁶⁾ Sodium selenolate anion was prepared *in situ* from (PhSe)₂ and NaBH₄: Scaborough, R. M., Jr.; Toder, B. H.; Smith, A. B., III. *J. Am. Chem. SOC.* 1980,102,3904-3913. *3* (100% yield): *[a]%* -19.0° (e 2.67, $CHCl₃$).

⁽⁷⁾ Crystallographic data for 2: orthorhombic, space group $P2_12_12_1$, with $a = 11.455(3)$ Å, $b = 13.535(3)$ Å, $c = 9.879(3)$ Å, $V = 1531.7(5)$ Å³, and $Z = 4$ (d_{oub}d = 1.411g cm⁻⁹), μ (CuK_a) = 33.46 cm⁻¹ ab coordinates for **2,** la, and lb with the Cambridge Crystallographic Data Centre. The coordinates *can* be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 lEZ, UK.

Figure 1. Perspective structure of **2.**

Selenoxide **2** is stable at room temperature in the solid state. The configurational stability of **2** seems to reflect stabilization by an intramolecular hydrogen bond between the seleninyl oxygen and the secondary hydroxy group. The presence of an intramolecular hydrogen bond is supported by a 3299 cm⁻¹ absorption in the FT-IR spectrum of a highly dilute (0.005 M) CCl₄ solution of 2. Treatment of (R_{Se}) -selenoxide 2 with 1 N aqueous NaOH in MeOH gave an equilibrium mixture of (R_{Se}) - and (S_{Se}) selenoxides, **2** and **4,** in a ratio of 2:l. Interestingly, the ratio of $2/4$ changed from 2:1 to 96:4 upon exposure of the mixture to 70% aqueous $HClO₄$ in MeOH. Under similar conditions, pure selenoxide **2** changed into a mixture of **2** and **4** (98:2).

To gain some insight into the steric course of the epimerization of the selenoxide and to isolate optically active selenuranes, we examined the following reactions. Treatment of the selenoxide **2** with HCls gave the chloroselenurane **la9 as** an exclusive product (100% yield) (Scheme 1). When a mixture of the selenoxide **2** and **⁴** (2:l) was treated with HC1, the chloroselenurane **la** was obtained **as** a single diastereomer (96% yield). Chloroselenurane **la** was **also** isolated from the reaction of selenide 3 with t-BuOC1 (100% yield). In a similar manner, bromoselenurane **lb** was obtained by treatment of **2** with HBr (95% yield). The **[(3,5-dinitrobenzoyl)oxyl-** and [(p**toluenesulfonyl)oxy]selenuranes (IC** and **Id)** were prepared by the reaction of the selenoxide 2 with 3.5dinitrobenzoic acid (88% yield) and p-toluenesulfonic acid $(91\% \text{ yield})$ in the presence of MgSO₄, respectively. No selenuranes **5a-d,** epimeric at selenium, were detected in these reactions. Formation of the selenuranes **5** might be unfavorable because of steric repulsion between the 7-methyl group of the bornyl moiety and the phenylgroup. It has been established that the chloroselenurane **la** has

Figure 2. Perspective structure of la.

a trigonal-bipyramidal (TBP) structure (R configuration¹¹ at the selenium center) by X-ray analysis (Figure 2).⁹ The apical-bond distances of Se-Cl [2.587(2) **AI** and **Se-0** [1.838(5) **AI** are shorter than each of the **sums** of van der Waals radii (3.80 and 3.40 **A,** respectively), thus ruling out a linear charge-transfer complex structure.12 The C1-Se-0 angle $[174.1(2)°]$ is consistent with those (Cl-Se-C or Cl- S_{e-N}) of racemic selenuranes reported previously. $^{3d,e}X$ -ray analysis of the bromoselenurane **1b** gave similar results.¹³ In analogy with **la** and **lb,** the stereochemistry of the selenuranes **IC** and **Id** can be assigned theR configuration, **as** depicted in Scheme 1. Addition of aqueous NaHCOa to a CHzClz solution of **la** resulted in complete hydrolysis, leading to the selenoxide 2, exclusively.¹⁴

Nucleophilic substitution of **la** with 3-5 equiv of NaBr gave the bromoselenurane **lb,** exclusively **(95%** yield) (Scheme 2). Although treatment of **lb** with NaCl **gave** not **la** but the unreacted starting material (95% yield), similar reaction of **lb** with AgCl afforded **la** (93% yield). No mixtures of la and **lb** were obtained from these reactions. Moreover, substitution of **la** by **AgF** gave the fluoroselenurane **le** (78% yield), which reverted to the parent chloroselenurane 1a (93% yield) upon treatment with NaCl.¹⁵

To sum up, (i) a base treatment of the selenoxide **2** afforded an equilibrium mixture of **2** and **4** (2:1), (ii) an acid treatment (HC104) of the selenoxide **2** or a mixture of the selenoxides **2** and **4** gave **2** predominantly, (iii) the selenuranes 1 were formed both from **2** and a mixture of

⁽⁸⁾ Martin, J. C.; Balthazor, T. M. *J. Am. Chem. SOC.* **1977,99, 152- 162.**

^{(9) &}lt;sup>77</sup>Se NMR¹⁰ (CDCl₃) δ 901.06. Crystallographic data for 1a:
orthorhombic, space group P_{21212_1} , with $a = 9.573(2)$ Å, $b = 20.975(4)$ Å,
 $c = 7.796(3)$ Å, $V = 1561.2(6)$ Å³, and $Z = 4$ ($d_{calod} = 1.462$ g cm **1379 with** $I > 3.00\sigma(I)$ **were used in refinement;** $R = 3.8\%$ **,** $R_w = 6.6\%$

^{(10) &}lt;sup>77</sup>Se NMR spectra were measured for solutions in CDCl₃ with $(MeSe)_2$ as an external standard. The chemical shifts relative to Me₂Se **(MeSe)z as an external standard. The chemical shifts relative to Mefie were calculated based on (MeSe)l: Odom, J. D.; Dawson, W. H.; Ellis, P. D.** *J. Am. Chem.* **Sac. 1979,101,5815-5822.**

⁽¹¹⁾ Designation of absolute confiiation at tetracoordinate selenium- (IV) was followed by an extension of the Cahn, Ingold, Prelog (CIP) R-S

nomenclature proposed by Martin and Balthazor (ref 8). (12) Ramming, C. *Acta Chem.* **Scand. 1960,14, 2145-2151.**

⁽¹³⁾ Crystallographic data for 1b: monoclinic, space group C2, with $a = 20.870(5)$ Å, $b = 6.916(6)$ Å, $c = 13.117(8)$ Å, $V = 1574(1)$ Å³, and Z = 4 ($d_{\text{caled}} = 1.638$ g cm⁻³), μ (CuK_a) = 61.13 cm⁻¹ absorption c by ω scans; 1348 unique reflections; 1232 with $I > 3.00\sigma(I)$ were used in **refinement;** $R = 3.8\%$, $R_{\bullet} = 5.7\%$.

⁽¹⁴⁾ A mixture of the eelenoxides 2 and 4 was obtained by a prolonged treatment of la with alkaline solution.

⁽¹⁵⁾ From these resulta, softness of the alkoxy selenonium ion 6 is suggested to be between Ag+ and Na+: Ho, T.-L. *Hard* **and** *Soft Acids* **and** *Bases Principle in Organic Chemistry;* **Academic Press: New York, 1977.**

2 and **4** by the action of HX, (iv) quick treatment of the selenuranes **1** with aqueous base gave the selenoxide **2,** and (v) nucleophilic displacement reactions of the haloselenuranes **1** with metal halides proceeded with retention of configuration. Moreover, the progress of the nucleophilic substitution depended on the countercation.

These results (i-v) can be most reasonably explained **as** shown in Schemes 3 and **4,** which presume two intermediates, acyclic 6 and cyclic 8 or **9.** In the case of epimerization of **2** under basic conditions (i) , attack of hydroxide ion on the selenium center of **2,** followed by protonation, gives the hydrate 6 (Scheme 3). Dehydration of 6 affords the selenoxides **2** and **4** in a thermodynamically-determined ratio. Under acidic conditions (ii), initial protonation of the seleninyl oxygen of **2** gives the selenonium ion **7** (Scheme **4).** *As* for the selenoxide **4,** protonation on the seleninyl oxygen affords the selenonium ion **10** under similar conditions. Inversion of configuration occurs at the selenium atom of the ion **10** to give the ion **7.** Intramolecular attack by the hydroxyl group of **7** proceeds stereoselectively, leading to the hydroxyselenurane 8. With weakly nucleophilic perchlorate anion $(ClO₄)$, the selenurane 8 reverts to the parent selenoxide **2** by successive protonation on the ring oxygen, cleavage of the oxaselenane ring, and deprotonation of the ion **7.** In the presence of halogen ions, carboxylate ion, or arylsulfonate ion (iii), the selenurane 8 is converted to the corresponding selenuranes **1** by dissociation of the Se-OH bond, followed by stereoselective association of the resulting alkoxyselenonium ion **9** with X-. Hydrolysis of the selenuranes **1** (iv) proceeds by the reverse pathway, *via* the ion **9,** the hydroxyselenurane 8, and the ion **7,** to give the selenoxide **2** stereoselectively. In the nucleophilic substitution reactions of the selenuranes $1 (v)$,¹⁶ X-selenurane 1 becomes the ion **9,** by the action of M+ followed by elimination of MX. Halogen anion **(Y-)** attacks **9** to give Y-selenurane 1', whose reaction with MX affords the parent selenurane **1** by, the reverse pathway.

We are now investigating the substitution reactions of the selenuranes **1** in detail to gather further evidence of the formation of the selenonium ion **9** during these reactions.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture, Japan (No. **04217104).**

Supplementary **Material** Available: **Experimental procedures, characterization data, and lH and lSC NMR spectra of new compounds (21 pages). This material is contained** in **libraries on microfiche, immediately follows this article in the microfilm version on the journal, and can be ordered from the ACS; see any current masthead page for ordering information.**

⁽¹⁶⁾ One of the reviewers commented on the stereoselective substitution **reactions of the eelenuranes 1 aa follom: The apparent retention is probably simply the reault of a high thermodynamic preference for one ieomer. It is poseible that** both **isomere are in rapid equilibrium aa the reaction proceede. However, we have proposed Schemes 3 and 4 aa the most reasonable mechanism to elucidate the whole resulta that we obtained in this paper (i-v). The presence of the ion 9 could be suggested by no formations of mixtures of 1 and 1' aa well aa by the dependence of these reactions on a countercation (M+ or M'+).**